MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.


DE  ANCELMO LUIZ GRACELI  [BRASILEIRO].



FÍSICA GRACELI DIMENSIONAL.




  MECÃNICA GRACELI GERAL - QTDRC.




equação Graceli dimensional relativista  tensorial quântica de campos 

G* =  =

[  /  IFF ]   * =   /  G   /     .  /

 G  = [DR] =            .+  

+  * =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

[  /  IFF ]  = INTERAÇÕES DE FORÇAS FUNDAMENTAIS. =

TeoriaInteraçãomediadorMagnitude relativaComportamentoFaixa
CromodinâmicaForça nuclear forteGlúon10411/r71,4 × 10-15 m
EletrodinâmicaForça eletromagnéticaFóton10391/r2infinito
FlavordinâmicaForça nuclear fracaBósons W e Z10291/r5 até 1/r710-18 m
GeometrodinâmicaForça gravitacionalgráviton101/r2infinito

G* =  OPERADOR DE DIMENSÕES DE GRACELI.

DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES DE CAMPOS E ENERGIAS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI,  E OUTROS.

*= DIMENSÕES DE GRACELI = ESTADOS FÍSICOS, TIPOS E CARACTERITÍCAS, E POTENCIAIS FÍSICOS DAS ESTRUTURAS, DOS ELEMENTOS QUÍMICOS, ENERGIAS E NÍVEIS DE ENERGIAS, POTENCIAIS DE INTERAÇÕES , CONDUÇÕES, EMISSÕES, DESINTEGRAÇÕES, ABSORÇÕES, E OUTROS.

*= DIMENSÕES DE GRACELI = ESTADOS DE FASES E INTERMEDIÁRIOS DE TEMPERATURA, ELETROMAGNETISMO,  ENTROPIA, VIBRAÇÕES. E OUTROS.

LEVANDO E UM  SISTEMA DE FASES ÍNFIMAS, TEMOS UM SISTEMA DIMENSIONAL INDETERMINADO.

   *=  = [          ] ω           .

 MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE INTERAÇÕES DE CAMPOS. EM ;


MECÂNICA GRACELI REPRESENTADA POR TRANSFORMADA.



dd = dd [G] = DERIVADA DE DIMENSÕES DE GRACELI.



ψ     [   ]    .




                                           - [  G*   /.    ] [  [

G { f [dd]}  ´[d] G*         / .  f [d]   G*                             dd [G]


O ESTADO QUÂNTICO DE GRACELI


                                           - [  G*   /.    ] [  []


G* = DIMENSÕES DE GRACELI TAMBÉM ESTÁ RELACIONADO COM INTERAÇÕES DE ENERGIAS, QUÂNTICAS, RELATIVÍSTICAS, , E INTERAÇÕES DE CAMPOS.


o tensor energia-momento  é aquele de um campo eletromagnético,


  = temperatura.


..




1 /  = [          ] ω       ψ     [ / ]   / [

] / [    ]     .



   = [          ] ,     [ ψ        / [

] ]    .




 = [          ] ,     [ ψ        / [

] ]  .


ψ [ ψ   / [] /    .



ψ  /     / [ ]  [

] .   . 



ψ         []   .



 ψ        []]   .


ψ       / [ 

] ]    .






ψ   / [

] /     .


*   ] /  [

] ]] .








    [

]] .


ψ   [

]/ ]  .










   ] / [

]  .




ψ         [ 

] ] / ]    .






ψ        [] /      





ψ [     [

 
]










ψ     [  ] /  ψ     .



       ] / ψ   .




O físico britânico John Ambrose Fleming, descobriu que o efeito poderia ser usado para detectar ondas de rádio. Fleming trabalhou no desenvolvimento de um tubo de vácuo de dois elementos, conhecido como diodo. Owen Willans Richardson trabalhou com emissão termiônica e recebeu o prêmio Nobel em 1928 em função de seu trabalho e da lei que leva seu nome, a lei de Richardson. Em todo o metal, há um ou dois elétrons por átomo que estão livres para moverem-se de um átomo para outro. Suas velocidades seguem uma distribuição estatística, melhor que ser uniformes, e ocasionalmente um elétron terá velocidade suficiente para sair do metal sem voltar. A quantidade mínima de energia que necessária para que um elétron saia da superfície é chamada a função trabalho, e varia de metal para metal. Um revestimento fino do óxido é aplicado a superfície do metal nos tubos de vácuo para diminuir a função trabalho, pois assim é mais fácil para os elétrons deixarem a superfície do óxido.

A lei de Richardson, também chamada de equação de Richardson-Dushmann, relaciona a densidade de corrente emitida com a temperatura:

onde 'T' é a temperatura em kelvin, 'W' é a função trabalho, 'k' é a constante de Boltzmann.

A constante de proporcionalidade 'A', conhecida como constante de Richardson, é dada por:

 A m-2 K-2

onde 'm' e 'e' são a massa e a carga do elétron, e 'h' é a constante de Planck.

Devido à função exponencial, a corrente aumenta rapidamente com a temperatura.

O efeito termiônico é de fundamental importância na eletrônica.




Comentários

Mensagens populares deste blogue